現在、動的色フィルタに関する論文を読んでいます。
屋外での移動体カメラのための動的色フィルタによる物体検出法に関する研究,
矢野良和
本郷 仁志, 山本 和彦, “動領域内の肌色推定による顔領域および顔部品抽出”,
映情学論, Vol.52, No.12, pp.1840-1847, 1998
D. Chai and K.N. Ngan., “Locating facial region of a head and shoulders color
image”, Proc. of Int.Conf. AutomaticFace and Gesture Recognition, pp.124-129,
1998.
アメリカ出張から帰りました、またジタバタしてますけど、そろそろ時差ぼけから抜け出し、仕事モードに戻ります。
[1]
指先と背景を以下のような方法で分離を行いました。
背景は動かない、指先は動く事を利用し、動くもののみを抽出できる動的背景差分法を利用します。
単純な動的背景差分法では、周辺光の影響により背景の分離がうまくいかないため、周辺光の影響を減少させるため、肌色フィルターを用いて、指先のみを抽出します。
具体的には、
1: 動的背景差分法を用いて、動く手を抽出する(同時に影も抽出される)。
2: 肌色フィルターをかけ、肌色部分を抽出する(影の部分を省く)。
3: 2値化を行う。
[2]
この結果を全体ゼミで発表するための結果をまとめています。
今後ホワイトボードなどでも実験しようと思います。
またICISIP2014の論文を作成しています。
sample
撮影した車両の光の線を学部時のシステムで抽出
重み付きヒストグラム自体が上手くできず、マスク処理にも失敗。
畳み込み積分時のヒストグラムとガウシアン関数の配列に原因があると思われる。
以前まではopencvのDFTを用いた畳み込み積分を行う際、配列の長さを自分で調整していた。
そのため、ヒストグラムの255の値まで畳み込みが行われていない可能性がある。
畳み込み積分と、閾値決定の改良
opencvのフーリエ変換と畳み込み積分のために最適な配列の長さを求める関数を使用した。
これにより、重み付きヒストグラムを出すことが出来た。
sampleのヒストグラム
重み付きヒストグラム
しかし、マスク処理を行ってみると閾値決定に原因があるのか光の線以外の場所がかなり残った。
重み付きヒストグラムを計算した際に、ヒストグラムのスケーリングを行っているため値の変化が小さくなり閾値決定に誤差が出ていると思われる。
そこで、スケーリングを行わずにヒストグラムを求めてみた。
重み付きヒストグラム(スケーリングなし)
これにより求められた閾値からマスク処理とラベリング処理を行い光の線を抽出した。
… Continue Reading ››
先週からの進捗
既存手法の精度測定用プログラムの作成をしています.
既存手法における精度以外の特性を調べるために,画像を作成しました。下記のリンクから見れます。
入力画像において,特徴点の抽出はできていますが,姿勢検出の結果が良くありません.原因として,抽出した特徴点とデータベースに登録済みの特徴点とのマッチングがうまくできていないと考えられます.
今週の予定
作成中のプログラムを完成させ,既存手法の精度を測定する.
これまでの進捗をスライドにまとめる.
上記の問題を解決する処理を考える.
の3点です.
3Dカメラを使い、三次元平面のメッシュデータを作成しています。
現在、光軸が交わる場合の三角測量を適応させてシミュレーションを行っています。
以下の結果は位相限定相関法を使わずに、テンプレートマッチングのみで視差を求めています。
In this work ,l collect 12 fish images from the internet. Contains 3 kinds of fish.
In this work , l want to use co-occurrence matrix to texture analysis from body surface pattern . According to entropy, contrast, relevancy and energy , l can find the difference between 3 … Continue Reading ››
進捗
カメラを問い合わせたところUSBポート3.0では正常に動作しない場合があると言われた。
mac miniのUSBポートはすべて3.0の規格でありこれが原因で動作がうまくいかないと思われる。
カメラの設定は後回しにしてカメラの撮影状況の変更と抽出法の改善を行う。
撮影を車両の正面から行ってみた
撮影自体は上手くいった。横から撮影していた時は、タイミングによって光の線が上手くできなかったが正面からだとかなり上手く光の線ができた。この線を抽出し長さから速度を測定するプログラムを作成してみる。
予定
7月のはじめはインターンシップのためのwebテスト勉強をしながら抽出法のプログラムを作成する。
7月中旬までには短期留学の準備などもあるのでプログラムを作成し終わり国際学会発表に向けた論文作成を行う。
研究テーマである姿勢検出の既存手法を再現するプログラムが完成しました.しかし,処理速度や必要なファイルサイズなど論文と異なる部分があります.現在,この問題は何が原因となっているか調査するとともに,検出精度を測定するためのテスト用プログラムを作成しています.
動的背景差分とユニフォームの色を利用した動画中の選手の抽出を行いましたので、次に、その選手の足元の座標の収得方法と収得した座標の変換方法を調べ、考察中です
投稿ナビゲーション
Stay Hungry, Stay Foolish!