週報(SUN YUYA)

The experiements of re-detection with confidence score about long term tracking.

The confidence score  is the biggest score  to select the best location in each frame, which can be the basis of judge whether the target is lost. We can use the single confidence score or the sequenced  confidence score to evaluate the tracking process.

Mixformer is a excellent  short term trackers and  Unicorn is a excellent  glocal tracker. Our purpose aims to modify Mixformer to a long object trackers.  So we want to add a re-detection mechanism. When the mechanism judge the tracking is failed, the running tracker will exchange to the global tracker to find the lost target object.

In this experiments, the re-detection mechanism exploit the confidence score to judge whether the target is lost.

Lasot is the benchmark of long term object tracking and average confidence score of mixformer in the lasot is 0.58 when IOU is zero.

The experiments are as follows:

lasot                                            | Success | Precision  | Norm Precision | Mixformer-base                   | 0.711      | 0.757         |0.740                        | M_U_sc_30                              | 0.713      | 0.761         |0.743                        | M_U_sc_58                              | 0.711      | 0.758         |0.742                        | M_U_sc_sq_10_30               | 0.718      | 0.764         |0.749                        |  M_U_sc_sq_20_30               | 0.719      | 0.766         |0.749                        | M_U_sc_sq_50_30               | 0.718      | 0.765         |0.747                        | M_U_sc_sq_100_30            | 0.715      | 0.761         |0.745                        | M_U_sc_sq_200_30            | 0.714      | 0.760         |0.743                        | M_U_sc_psq_10_30            | 0.718      | 0.764         |0.748                        | M_U_sc_psq_20_30            | 0.718      | 0.765         |0.748                        | M_U_sc_sq_10_58               | 0.715      | 0.762         |0.745                        | M_U_sc_sq_200_58            | 0.715      | 0.763         |0.745                        |

Where M_U_sc_30 is the tracker using score under 0.3 and M_U_sc_58 is the tracker using score under 0.58. M_U_sc_sq_10_30  means that average ten confidence scores under 0.3. And Psq uses penalty.

The 0.3 may be more effective than 0.58.  The best length of sequence  may be 20. The penaly seems not effective. It’s too cumbersome to conduct more experiments on hyperparameters

In summary, we can see that exploiting confidence score to re-detect works but is not obvious. So in the next step, we can conduct experiemts on the similarity of templates and tracking object.

 

週報(白川)#他人のデータ#スマートウォッチ#結論

研究進捗

  • 他人のデータを自分のモデルに突っ込んでみた(自分のデータに混ぜて標準化、別々で標準化2パターン)

→わかってはいたがうまく判定できなかった。

良モデル作成には、今のところ自分のデータを使うしかない(飲酒前後30分でできる)

  • スマートウォッチを使って取得した自身のデータを使って飲酒状態を推定し

少ないデータで学習し構築したモデルの方が精度が良かった。

学習データ少↓

学習データ多↓