GitLabにプロジェクト bachelor-thesis-2024を作成して卒論作成雛形を配置しました。
月別アーカイブ: 2024年4月
週報(岩田)
卒論雛形をクローンし,自分で作成したプロジェクトbachelor-thesis-2024に配置しました.
B4ゼミ
出席:松本、岩田、吉塚、小西、加峯
内容:Gitlabでのプロジェクト作成、ローカルとのリンクの仕方、LaTexの自動チェックなどを確認しました。
教訓:ファイルのパース名や、ファイル名を日本語などのマルチバイト文字を使用するのは可能な限り避け、アルファベットでの命名習慣を身につけるべし!
週報(吉塚)
Gitlab上にbachelor-thesis-2024プロジェクトを作成し、Latexの卒論作成雛形を配置した。
週報(小西)
先輩とお話ししました。
今週の進捗(藤本)
内定者懇親会のためゼミは欠席します。
週報(TANG)
Preparing opening defense in YANGZHOU University
週報(GAO)
1.learn the framework of yolo-v8
2. learn the seam attention mechanism(https://arxiv.org/abs/2208.02019)
3. Try to come up with a better data fusion framework
4.Evaluation mechanisms are learning
今週の進捗(藤崎)
面接があるので今週のゼミはお休みします。
週報(SUN YUYA)
The details of some long-term trackers.
1 . SiamX: An Efficient Long-term Tracker Using Cross-level Feature Correlation and Adaptive Tracking Scheme.
The key is “ADAPTIVE TRACKING SCHEME”.
(1)Momentum Compensation.
Exploit the concept “fast motion” to judge whether the target object is lost.
“If the target displacements between consecutive frames exceeds target sizes, it considers the target object is at a fast-moving state. To avoid targets leaving the search regions, the search center drifts in the direction of momentum:”
conclusion: Fake paper. Its codes lack the long-term tracker.
2. Combining complementary trackers for enhanced long-term visual object tracking.
Running two trackers.
But we can use its score’s method to re-detect.
3. GUSOT: Green and Unsupervised Single Object Tracking for Long Video Sequences
if s1(f∗, x1) > s1(f∗, x2) and s2(f∗, x1) ≤ s2(f∗, x2) :
re-detect else: continue.
Key: motion residual. The key is “UHP-SOT”
4. High-Performance Long-Term Tracking with Meta-Updater
(1) appearance model (lstm)
(2) re-detection( the flag of DiMP ? )
Conclusion: Another fake paper. The most important point is DIMP !
5. UHP-SOT: An Unsupervised High-Performance Single Object Tracker(2017)
Methods: It has three trackers:
(1) Trajectories-based box prediction ( principal component analysis)
(2) Background motion modeling ( optical flow)
(3) Appearance model (normal tracker)
6. Object Tracking Using Background Subtraction and Motion Estimation in MPEG Videos (2005)
Key: Using four corner to compute the motion of background(Optical flow).
7. Fast Object Tracking Using Adaptive Block Matching(2005)
Key: Exploiting ‘Mode filter’ in order to straighten up noisy vectors (Optical flow) and thus eliminate this problem.