「研究進捗」カテゴリーアーカイブ

毎週の研究進捗の報告

週報(SUN YUYA)

I am reading  some novel papers about long term object tracking in 2023.

Compare to  normal object tracking, the long term object tracking must have the ability to find the missing target object. The papers are as follows:

  1. “MFT: Long-Term Tracking of Every Pixel”

The paper’s purpose:

Solving the challenges, such as dense,  pixel-level, long-term tracking.

Contributions:

(1) The approach exploits optical flows estimated not only between consecutive frames, but also for pairs of frames at logarithmically spaced intervals.

(2) It then selects the most reliable sequence of flows on the basis of estimates of its geometric accuracy and the probability of occlusion, both provided by a pre-trained CNN.

Personal Evaluation:

The paper exploits a new routine, which is worth reading.

2. Combining complementary trackers for enhanced long-term visual object tracking

The paper’s purpose:

Cmbining the capabilities of baseline trackers in the context of long-term visual object tracking.

Contributions:

(1) Proposing a strategy which can perceive whether the two trackers are following the target object through an online learned deep verification model to  select the best performing tracker as well as it corrects their performance when failing.

Personal Evaluation:

The long term tracker usually own the ability to switch the local tracker and global tracker.This paper may propose a novel way.

3. Target-Aware Tracking with Long-term Context Attention

The paper’s purpose:

(1) Unlike siamese tracker,  exploiting contextual information.

(2) Coping with large appearance changes, rapid target movement, and attraction from similar objects.

Contributions:

(1) Proposing a LCA (transformer ) which uses the target state from the previous frame to exclude the interference of similar objects and complex backgrounds.

Personal Evaluation:

A normal tracker with new transformer.

4. Multi-Template Temporal Siamese Network for Long-Term
Object Tracking

The paper’s purpose:

(1) Avoiding defects of  siamese tracker.

(2) Coping with target appearance changes and similar objects .

Contributions:

(1) Learning the path history by a bag of templates

(2) Projecting a potential future target location in a next frame.

Personal Evaluation: Competitor! Consensus of ideas.Worth reading.

5. SiamX: An Efficient Long-term Tracker Using Cross-level Feature
Correlation and Adaptive Tracking Scheme

The paper’s purpose:

(1) Improving siamese tracker.

(2) large variance, presence of distractors, fast motion, or target disappearing and the like .

Contributions:

(1) Exploiting cross-level Siamese features to learn robust
correlations between the target template and search regions.

(2) Proposing inference strategies to prevent tracking loss
and realize fast target re-localization.

Personal Evaluation: Normal. I want to know how to re-locate. Worth reading.

6. ‘Skimming-Perusal’ Tracking: A Framework for Real-Time and Robust Long-term Tracking

The paper’s purpose:

(1) Traditional long-term tracker are limited.

(2) To find the missing target object and accerlate the speed of global search.

Contributions:

(1) Determining whether the tracked object being present or absent, and then chooses the tracking strategies of local search or global search respectively in the next frame.

(2) Speeding up the image-wide global search,
a novel skimming module is designed to efficiently choose
the most possible regions from a large number of sliding
windows.

Personal Evaluation: The global search  is useful. Worth reading.

週報(西元)

複数人を顔認証するとき、座席の後ろの人が認証されずらいので、解像度をあげるか、写真の何枚かにわけてとって、後ろはズームしてとるようにして認証してみようかなとおもっています。

https://ai-scholar.tech/articles/face-recognition/attenface

この研究ではスナップ写真(おそらく一枚)を撮って顔認証しているが後ろのほうは認証できていなかったみたいです。

週報(白川)#研究進捗#データ前処理

研究進捗

データ97個

・SVM

テストデータ20%、ランダムステイト42:テストデータ精度85%、訓練データ精度88.31%

・ロジスティック回帰

テストデータ20%、ランダムステイト42:テストデータ精度85%、訓練データ精度88.31%

訓練データ100%:訓練データ精度79.31%

検討事項・わかったこと

・SVMとロジスティック回帰で精度が全く同じなのはなぜなのか

・random_stateを変えると訓練データ精度が多少変わる

勉強

週報(白川)#類似研究#データ収集ルール

類似研究

  1. シートに組み込んだ磁気回路センサーと圧力センサーにより運転手の体動、心拍数及び呼吸数を計測し入眠予兆を検知(製品化)PCと接続することで飲酒の有無も判別できる予定との記事も発売された製品情報を見るとその機能はなしか記事2
  2. シートに取り付けたセンサから加速度脈波加齢指数を計測し飲酒の有無を判別→バンド幅と分散度合いから
  3. MEMS血流量センサで耳たぶや指先から血流量や心拍、脈の心拍を測定することで呼気中アルコール濃度の相関を確認追加研究
  4. シートに取り付けたエアパックセンサーを用いて心拍数、心拍・脈波の血流量のゆらぎと呼気中アルコール濃度の相関を確認

→相関の確認やデータのばらつきから飲酒の検知をしているため、機械学習を用いて飲酒の検知をしているという点や簡単に(スマートウォッチでも)測定できる生体パラメータを用いるという点で新規性があると主張する

データ収集ルール(類似実験)

実験3

  • アルコールパッチテストで酒に強い弱いを分類