I’m in the process of revising my paper based on the review comments.
The following experimental results are being supplemented with the evaluation metric BDE, which is a measure of the quality of the boundary of the segmentation result
毎週の研究進捗の報告
I am reading some novel papers about long term object tracking in 2023.
Compare to normal object tracking, the long term object tracking must have the ability to find the missing target object. The papers are as follows:
The paper’s purpose:
Solving the challenges, such as dense, pixel-level, long-term tracking.
Contributions:
(1) The approach exploits optical flows estimated not only between consecutive frames, but also for pairs of frames at logarithmically spaced intervals.
(2) It then selects the most reliable sequence of flows on the basis of estimates of its geometric accuracy and the probability of occlusion, both provided by a pre-trained CNN.
Personal Evaluation:
The paper exploits a new routine, which is worth reading.
2. Combining complementary trackers for enhanced long-term visual object tracking
The paper’s purpose:
Cmbining the capabilities of baseline trackers in the context of long-term visual object tracking.
Contributions:
(1) Proposing a strategy which can perceive whether the two trackers are following the target object through an online learned deep verification model to select the best performing tracker as well as it corrects their performance when failing.
Personal Evaluation:
The long term tracker usually own the ability to switch the local tracker and global tracker.This paper may propose a novel way.
3. Target-Aware Tracking with Long-term Context Attention
The paper’s purpose:
(1) Unlike siamese tracker, exploiting contextual information.
(2) Coping with large appearance changes, rapid target movement, and attraction from similar objects.
Contributions:
(1) Proposing a LCA (transformer ) which uses the target state from the previous frame to exclude the interference of similar objects and complex backgrounds.
Personal Evaluation:
A normal tracker with new transformer.
4. Multi-Template Temporal Siamese Network for Long-Term
Object Tracking
The paper’s purpose:
(1) Avoiding defects of siamese tracker.
(2) Coping with target appearance changes and similar objects .
Contributions:
(1) Learning the path history by a bag of templates
(2) Projecting a potential future target location in a next frame.
Personal Evaluation: Competitor! Consensus of ideas.Worth reading.
5. SiamX: An Efficient Long-term Tracker Using Cross-level Feature
Correlation and Adaptive Tracking Scheme
The paper’s purpose:
(1) Improving siamese tracker.
(2) large variance, presence of distractors, fast motion, or target disappearing and the like .
Contributions:
(1) Exploiting cross-level Siamese features to learn robust
correlations between the target template and search regions.
(2) Proposing inference strategies to prevent tracking loss
and realize fast target re-localization.
Personal Evaluation: Normal. I want to know how to re-locate. Worth reading.
6. ‘Skimming-Perusal’ Tracking: A Framework for Real-Time and Robust Long-term Tracking
The paper’s purpose:
(1) Traditional long-term tracker are limited.
(2) To find the missing target object and accerlate the speed of global search.
Contributions:
(1) Determining whether the tracked object being present or absent, and then chooses the tracking strategies of local search or global search respectively in the next frame.
(2) Speeding up the image-wide global search,
a novel skimming module is designed to efficiently choose
the most possible regions from a large number of sliding
windows.
Personal Evaluation: The global search is useful. Worth reading.
【先週】
・猫の写真データの収集
・スライド作成
【来週】
収集した写真データをもとに1匹分のCNNモデル(顔画像)を作成して精度の確認を行う予定
研究内容を変えようと思います。内容はサッカースタジアムへの顔認証システムです。新規性として観客が先に登録した背番号を検出して顔認証をする母数を減らし、顔認証をすることです。
複数人を顔認証するとき、座席の後ろの人が認証されずらいので、解像度をあげるか、写真の何枚かにわけてとって、後ろはズームしてとるようにして認証してみようかなとおもっています。
https://ai-scholar.tech/articles/face-recognition/attenface
この研究ではスナップ写真(おそらく一枚)を撮って顔認証しているが後ろのほうは認証できていなかったみたいです。
会社の説明会があるため今週のゼミは欠席します。
体調が悪いので、本日のゼミ欠席します。
申し訳ございません。
データ97個
・SVM
テストデータ20%、ランダムステイト42:テストデータ精度85%、訓練データ精度88.31%
・ロジスティック回帰
テストデータ20%、ランダムステイト42:テストデータ精度85%、訓練データ精度88.31%
訓練データ100%:訓練データ精度79.31%
・SVMとロジスティック回帰で精度が全く同じなのはなぜなのか
・random_stateを変えると訓練データ精度が多少変わる
→相関の確認やデータのばらつきから飲酒の検知をしているため、機械学習を用いて飲酒の検知をしているという点や簡単に(スマートウォッチでも)測定できる生体パラメータを用いるという点で新規性があると主張する
実験3